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Density correlations in lattice gases in contact with a confining wall
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A discrete version of classical density functional theory applicable to lattice gases or Ising spin systems is
proposed, which accounts for the requirement of particle-hole symmetry in the presence of pairwise forces.
Results of our theory for density profiles and two-particle correlation functions in two-dimensional strip
geometries compare favorably with Monte Carlo simulations. Some problems with standard ‘‘weighted-
density’’ approximation schemes, when applied to lattice gases, are pointed out.

PACS number~s!: 61.20.2p, 05.50.1q, 68.35.2p
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I. INTRODUCTION

In recent years, density functional theory~DFT! has been
developed sufficiently far to become a quantitative, mic
scopic method in studies of the equilibrium properties
nonuniform fluids@1,2#. In numerous applications the DF
has proved not only to account for the gas-liquid and
freezing transition in the bulk of three-dimensional~3D! flu-
ids @3–9#, but also for various phenomena at surfaces an
systems with restricted geometries. Examples are surface
richment in mixtures@10#, wetting phenomena@11#, and
phase transitions in fluids confined between hard walls@12#
and in narrow pores@13# as well as two-dimensional meltin
@14#. The DFT thus appears to constitute a quite general
in the investigation of small confined systems, which is
problem of growing interest in view of the potential techn
logical importance of artificial nano-sized structures.

Most of the underlying models are naturally formulated
continuous space. There are, however, important phys
situations, e.g., metallic alloys or submonolayer adsorb
systems, suggesting a coarse-grained description in term
discrete molecular configurations. This poses the problem
formulating a discrete analog of density functional theo
based on a lattice gas Hamiltonian of the form

H5
1

2 (
i j

Vi j ninj1(
i

~e i2m!ni , ~1!

where the occupation numbers for lattice sitesi are denoted
by ni . In a ‘‘fermionic’’ lattice gas, which we consider here
a site is either vacant (ni50) or singly occupied (ni51), so
that ni

25ni . In Eq. ~1!, Vi j are the two-particle interaction
parameters,e i the site energies due to an external potent
and m is the chemical potential. As shown previously,
formal steps in DFT for continuous fluids are readily adap
to the discrete case described by Eq.~1! @15#. The central
feature of the lattice version of DFT is a variational princip
based on the grand free energy

Ve@p#5(
i

~e i2m!pi1F@p# ~2!
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as a functional of the average occupation numbersp5$pi%;
pi5^ni&. The free-energy functionalF@p#, which is indepen-
dent of e i , can be decomposed into an ‘‘ideal’’ part whic
describes a noninteracting lattice gas,

Fid@p#5kBT(
i

@pi ln pi1~12pi !ln~12pi !#, ~3!

and an excess partFexc@p# due to interactions. For a give
temperatureT, chemical potentialm, and external potentia
e i , the equilibrium occupation is obtained by minimizin
Ve@p#, the minimum value representing the thermodynam
cal grand free energy. The condition]Ve /]pi50 immedi-
ately yields an expression of the type of a Fermi-Dirac d
tribution,

pi5„11exp$b~e i2m!2ci
(1)@p#%…21, ~4!

with the ‘‘correlation potential’’

2kBTci
(1)@p#5]Fexc/]pi . ~5!

In order to proceed, one needs an approximation forci
(1)@p#

or Fexc@p#. The simplest approximation, analogous to t
freezing theory of Ramakrishnan and Yussuoff@16#, consists
of an expansion ofFexc@p# up to terms of second order in th
deviationspi2 p̄ from some uniform reference densityp̄,

Fexc@p#.2
kBT

2 (
i j

ci j ~ p̄!~pi2 p̄!~pj2 p̄!. ~6!

Here ci j (p) denotes the Ornstein-Zernike direct correlati
function, assumed to be known. It is related to the pair c
relation function

Hi j ~p!5^ninj&2p2 ~7!

by the Ornstein-Zernike~OZ! relation, which in our discrete
theory can be written in the form

Hi j ~p!5p~12p!Fd i j 1(
k

cik~p!Hk j~p!G . ~8!
422 ©2000 The American Physical Society
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PRE 61 423DENSITY CORRELATIONS IN LATTICE GASES IN . . .
Within the above scheme, ordering transitions in lattice ga
can be treated in analogy to the freezing transition in c
ventional DFT for continuous fluids@15#. In addition, the
discrete DFT has successfully been applied to interfa
properties in lattice gases, including the thermodynamics
stepped surfaces and surface roughening@17#. More recently
it has been shown to account also for surface segrega
effects in fcc alloys@18#. However, all practical calculation
performed so far made use of the approximation~6!, which is
clearly insufficient for a treatment of some important circu
stances. For example, it fails to account for any realistic b
phase diagram in the presence of competing interactions
generally, for surface phase diagrams including wetting p
nomena@19#. Dealing with these problems requires term
higher than second order inFexc. Truncated higher-orde
expansions ofFexc in powers of the density inhomogeneitie
however, may lead to intricate problems of convergen
@20#. In continuum theories, various forms of the ‘‘weighte
density approximation’’~WDA! @1#, which formally involve
powers in the density inhomogeneities to infinite order, ha
been developed in treatments of the freezing transition@3–9#,
interfacial properties and wetting phenomena@21,22#, capil-
lary condensation@13#, particle density profiles of hard
spheres at hard walls@23,24#, triplet direct correlations in
homogeneous fluids@24,25#, and pair correlations of hard
spheres near planar walls@26# and in slit geometries@27#.

By immediately applying standard WDA schemes~which
involve only one weight function! to the lattice gas, however
one is faced with the problem of incorporating particle-ho
symmetry. This symmetry is an inherent property of t
Hamiltonian ~1! based on pairwise interactions. While th
problem is discussed in some detail in the Appendix,
pursue a different line in the main part of this paper. W
propose and analyze a simple form for the free-energy fu
tional which preserves particle-hole symmetry and simu
neously constitutes an important conceptual and practical
provement over the ‘‘linear DFT’’ scheme contained in E
~6!.

Our paper is organized as follows. In Sec. II we introdu
our basic approximation, whose structure is closely relate
the work by Go¨tzelmann et al. @26#, and which we call
‘‘semilinear DFT.’’ In Sec. III we apply it to a two-
dimensional lattice gas with attractive nearest-neighbor in
actions in a strip geometry, where the confining walls exe
potentialeW to their adjacent~outermost! layer. As usual, we
need the direct correlation function for uniform states as
basic input. This quantity is obtained from the Ornste
Zernike equation in connection with the Kramers-Wann
approximation, which allows us to compare the semilin
DFT with Monte Carlo simulations in a quantitative mann
Besides the calculation of density profiles, our main conc
is two-point correlation functions, describing density cor
lations which are parallel and perpendicular to the confin
walls. Generally, these correlation functions directly en
the cross section in surface scattering experiments@28#. A
detailed Monte Carlo study of density patterns and two-po
density correlations of Ising systems in strip and film geo
etries has been published before by Binderet al. @10#,
whereas correlations of inhomogeneous hard-core sys
es
-

al
of

on

-
k
d,

e-

e

e

e

c-
-
-

.

e
to

r-
a

r
-
r
r
.
n
-
g
r

t
-

ms

have been treated by Robledo@29# for the discrete case an
Götzelmann et al. @26# for continuous fluids. Section IV
summarizes our results.

II. SEMILINEAR DFT

Let us first of all assess the behavior of the excess fr
energy functionalFexc@p# with respect to the exchange o
particles and holes~vacancies!. Clearly, the expression

(
i j

Vi j ninj2V0(
i

ni ~9!

with V05( jVi j is invariant if we replaceni with 12ni on
every sitei. Since the form of the functionalFexc@p# is de-
termined only by the pair interactions but is independent
the single-particle terms in Eq.~1!, it follows that the func-
tional

Fexc
(S) @p#5Fexc@p#2

1

2
V0(

i
pi , ~10!

which is Fexc minus the average of the second term in E
~9!, does not change with respect to the replacementpi→1
2pi . Note thatFexc

(S) @p# is zero for both a completely empt
and a completely filled lattice. Correspondingly, iff exc(p)
denotes the excess free energy per site in a homogen
phase with average densityp, the function

f exc
(S) ~p!5 f exc~p!2

1

2
V0p ~11!

obeys the symmetry relation

f exc
(S) ~p!5 f exc

(S) ~12p!. ~12!

Before we introduce our basic approximation toFexc@p#,
consider the representation

2b f exc~p!5E
0

p

dp8E
0

p8
dp9c̃0~p9! ~13!

of f exc(p) in terms of the zero wave-vector compone
c̃0(p)5( j ci j (p) of the direct correlation function. Togethe
with the symmetry relation~12! and

ci j ~p!5ci j ~12p!, ~14!

Eq. ~13! yields a condition forc̃0(p) worth noting. Since
f exc

(S) (0)5 f exc
(S) (1)50, we havef exc(1)5V0/2 which can be

combined with Eq.~13! and Eq.~14! to give

E
0

1

dp c̃0~p!52bV0 . ~15!

This sum rule forc̃0(p) provides a test for any approximat
calculation ofci j (p) in a lattice gas.

Under the assumption that Eq.~15! is satisfied, we now
construct an approximate free-energy functional consis
with the symmetry of Eq.~10! under the exchangepi↔1
2pi . Writing Fexc

(S) @p#5( i f i
(S) , we require the excess fre

energy f i
(S) related to sitei to consist of a local term deter
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424 PRE 61J. REINHARD, W. DIETERICH, P. MAASS, AND H. L. FRISCH
mined by the exact free energy per site of a uniform st
@Eq. ~13!#, and additive contributions from neighboring sit
j, which are linear in the occupation differencespj2pi .
Hence,

Fexc
(S) @p#5(

i
F f exc

(S) ~pi !2
kBT

2 (
j Þ i

a i j ~pj2pi !G . ~16!

The pi-dependent coefficientsa i j are determined by requir
ing that

S ]2~2bFexc
(S) !

]pi]pj
D

p

5ci j ~p! ~17!

hold for uniform states with~arbitrary! constant densityp.
This gives

a i j 5E
1/2

pi
dp8ci j ~p8!.

The advantage of the expression~16! over the ‘‘linear’’
DFT, Eq. ~6!, is that it involves the correct free energy
uniform states but no particular reference state. The form
Eq. ~16! is analogous to that derived in previous work
Götzelmannet al. on continuous hard core systems@26#.
Their ‘‘linear-weighted density functional theory’’ is base
on an expression of the same type as Eq.~16!, where the
densitiespi andpj are replaced by weighted densities.

III. MODEL CALCULATIONS IN TWO DIMENSIONS

We now apply the above scheme to particles with near
neighbor attractionV,0 on a two-dimensional square la
tice. In order to obtain the input quantitiesci j (p) for that
model, some further approximation is required. We shall
the Kramers-Wannier cluster approximation, in which t
elementary squares of the square lattice are used as the
clusters. This method is known to give a fair representat
of the phase diagram of the nearest-neighbor Ising mo
and its accuracy is regarded as sufficient for the present
pose@30#. Specifically, it yields a critical temperature give
by kBTc

KW/uVu.0.606 while the exact critical temperatu
satisfieskBTc /uVu.0.567. From the Kramers-Wannier a
proximation we obtain the excess free energyf exc(p), which
in connection with Eq.~11! satisfies the symmetry conditio
~12!. In addition, by appropriate summations over clus
variables we also obtain the pair-correlation functionsHi j (p)
for nearest and next-nearest neighbors, denoted byH1(p)
andH2(p), respectively.

In order to determine thenth-neighbor direct correlation
function, denoted bycn(p), we take advantage of the fac
that, generally,ci j (p) becomes very small at distances b
yond the interaction range~see, however, Ref.@31#!. Hence
we takecn(p)50 for n>2 and are left with two unknowns
c1(p) andc0(p)[cii (p). These are determined most eas
by using the compressibility sum rule

c̃0~p!.c0~p!14c1~p!52b
d2

dp2
f exc~p! ~18!

and the OZ equation~8! for i 5 j :
e

of

t-

e

sic
n
l,
r-

r

-

p~12p!c0~p!14c1~p!H1~p!50. ~19!

Here we have usedHii (p)5p(12p), so that(kcikHki50.
The remaining equations~8! ( iÞ j ) can be used as a con

sistency check of this procedure. For example, one can
culateH2(p) in terms ofcn(p) from Eq. ~8! by taking Fou-
rier transforms and then compare the result withH2 obtained
directly from the Kramers-Wannier approximation. Calcu
tions show that as long askBT/uVu*0.7 the difference be-
tween both methods amounts to less than 5% for allp, but
differences increase at lower temperatures.

Knowing f exc(p) andcn(p), the excess free-energy func
tional, Eq. ~16!, is completely specified and we can no
calculate density profilespi and pair-correlation functions
^ninj& for inhomogeneous systems by using Eqs.~4! and~5!.

FIG. 1. Lateral pair correlation functionH i(x,y) in a strip of
width L540 versus lateral coordinatey in the first row (x50) and
far from the wall (x519) resulting from Monte Carlo simulation
and the semilinear DFT. Energetically neutral walls (eW50) were
assumed, with constant (x-independent! densitypx50.5.
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According to Percus’ test-particle method@32#, ^ninj&/pj
with iÞ j is regarded as the density at sitei, obtained from
Eq. ~4!, under the condition that a particle is fixed at sitej,
which means that in solving Eq.~4! for pi we setpj51.

In applying this formalism, our primary goal is to inve
tigate wall-induced correlations in confined systems. As
example, we study in the following a strip geometry, whe
the lattice consists of pointsi 5(x,y) with perpendicular~di-
mensionless! coordinatex(0<x<L) and lateral~dimension-
less! coordinatey(2`,y,1`). Translational invariance
is assumed in the direction parallel to the strip. Lateral a
perpendicular correlations are characterized by

H i~x,y!5^nx0nxy&2px
2 ~20!

and

H'~x!5^n00nx0&2p0px , ~21!

where in the latter case one point is fixed at the surface.
the density profile perpendicular to the walls we have u
the notationpx5^nx,y& which in the strip geometry consid
ered is independent ofy. Boundary conditions with respect t
thex direction are such that occupations outside the strip

FIG. 2. Decay lengthl(x), see Eq.~22!, of lateral correlations
for neutral walls (px50.5) and three different temperatures, follow
ing from the SLDFT~cf. also Fig. 1!.

FIG. 3. Density profilespx according to the SLDFT~lines! in
comparison with MC data~open symbols! for three different cases
satisfyingp0.0.5 andpx.0.1 in the bulk. See Table I for values o
eW andm.
n

d

or
d

re

purely random withpi50.5 ~which corresponds to zero mag
netization in the equivalent Ising model!.

To start our discussion, consider a half-filled lattice w
constant~zero! site energies. Then for the boundary cond
tions chosen we simply obtain a constant densitypx50.5
~‘‘neutral’’ walls!. However, because of the missing neig
bors ~in the language of Ising spins! at surface sites, corre
lations among near-surface sites become weaker than in
bulk. This is demonstrated in Fig. 1, which shows the late
decay of the functionH i(x,y) at the surface (x50) and in
the middle (x519) of a strip of widthL540 for several
temperatures above the critical temperatureTc . Data points
obtained from Monte Carlo simulation are shown for co
parison. For temperatureskBT/uVu*0.75 @Fig. 1~a!# good
agreement with the semilinear DFT~SLDFT! ~solid lines! is
found over the main decay of the functionsH i(x,y). As
expected, atx50 the decay is considerably faster than ax
519, where the curves reflect bulk behavior. For lower te
peratures@Figs. 1~b! and 1~c!# we still find agreement with
Monte Carlo data inside the bulk. However, the DFT und
estimates the range of lateral correlations at the surfacx
50. The reason may be seen in the fact that the influenc
the occupational environment on the behavior of the tw
particle correlation function is basically a multi-~larger-than-
two! particle correlation effect, whose strength is undere
mated by the DFT when we approach the critic
temperature.

In Fig. 2 we plotted the characteristic length

l~x!5

(
y>0

yHi~x,y!

(
y>0

H i~x,y!

~22!

FIG. 4. Decay lengthl(x) of lateral correlations for the sam
set of parameters as in Fig. 3~from SLDFT!.

TABLE I. Parameters used to calculate the density profiles
Fig. 3 and lateral correlations in Fig. 4.

kBT/uVu eW /uVu m/uVu

0.80 20.7 20.4
0.70 20.4 20.2
0.65 20.3 20.1
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for the lateral decay of the correlation functionH i(x,y), de-
rived from the semilinear DFT for the same set of parame
as in Fig. 1. Inside the bulk,l(x) can be identified with the
bulk correlation lengthj, but when moving in the outward
direction it substantially decreases in a rangex&j near the
surface, reflecting weaker correlations. This trend is clea
enhanced as the temperature gets lower.

A quite different situation arises in systems with sm
bulk occupation, but an attractive interaction with the co
fining wall. Let us represent this particle-wall interaction
a potentialeW,0 associated with sites in the outermost ro
x50 andx5L. For example, choosing the chemical pote
tial m such thatpx.0.1 in the bulk, a wall energyeW /uVu
521.2, andkBT/uVu50.8, we obtain an enrichment profil
with a densityp0.0.5 for the outermost row. Profiles calcu
lated from the SLDFT quantitatively agree with correspon
ing Monte Carlo~MC! data; see Fig. 3. This figure include
two further cases with lower temperatures where in each c
m and eW are chosen such thatp0.0.5 andpx.0.1 in the
bulk ~see Table I!. To discuss correlations, let us note th
near the surface the system locally is closer to critical c
ditions than in the bulk and hence we expectl(x) to increase
when approaching the surface. This is confirmed in Fig
again for several temperatures. However, the abo
mentioned effect of missing neighbors outside the wall
also visible: at the two lower temperatures the lengthl(x),
after passing through a maximum, becomes smaller w
approachingx50.

It is instructive to study cases with an even stronger
traction to the wall, where the density profilepx passes the
value 0.5 already at some distancex0 from the wall. Situa-
tions with px50.1 in the bulk andp050.9 are presented in
Fig. 5 for the same temperatures as in Fig. 3~for the corre-
sponding values ofeW and m, see Table II!. Again we ob-
serve excellent agreement between calculated density

FIG. 5. Same as Fig. 3, but with stronger attraction to the wa
such thatp0.0.9 ~cf. Table II!.

TABLE II. Parameters used to calculate the density profiles
Fig. 5 and lateral correlations in Fig. 6.

kBT/uVu eW /uVu m/uVu

0.80 21.9 20.4
0.70 21.5 20.2
0.65 21.3 20.1
rs
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files and MC data. Clearly, particle-hole symmetry~see Sec.
II ! is a necessary requirement for any theory capable of
scribing density profiles of this type. The range of late
correlationsl(x) now is expected to vary withx in a non-
monotonic fashion and to display a maximum nearx0, which
is confirmed in Fig. 6 by our calculations based on t
SLDFT.

IV. SUMMARY

A density functional theory for discrete lattice gases w
two-particle interactions has been formulated that resp
particle-hole symmetry. The theory is based on an appro
mate free energy per site which contains the local free ene
of a homogeneous system and additive terms linear in
occupation of neighboring sites. Within this ‘‘semilinea
DFT’’ we calculated density profiles and two-point correl
tion functions for particles subjected to a nearest-neigh
attraction on a two-dimensional square lattice confined
tween two parallel walls. The required input quantity, t
Ornstein-Zernike direct correlation function of the tw
dimensional homogeneous lattice gas, was calculated
combining the Kramers-Wannier approximation with the O
equation. ~This procedure may be termed ‘‘Kramer
Wannier closure’’ for the OZ equation.!

Good quantitative agreement between calculated den
profiles and Monte Carlo simulations has been achieved
particular we discussed the range of lateral correlations in
presence of different forms of the enrichment profile induc
by the walls. For temperatures sufficiently aboveTc the lat-
eral correlation functions show satisfactory agreement w
simulation data. Our study suggests that the propo
method may serve as a useful tool in studies of real phys
systems, e.g., of two-dimensional confined adsorbate
tems or of three–dimensional thin films of metallic alloys
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APPENDIX: WEIGHTED-DENSITY APPROXIMATION
SCHEMES FOR LATTICE GASES

WDA methods have become a standard tool in the eq
librium theory of continuous fluids. Numerous applicatio
to the structure of geometrically confined fluids, interfac
properties, and also the freezing transition have success
been worked out. Yet we would like to point out that o
must be careful when adapting this concept to discrete la
gas models incorporating the site exclusion principle. C
sider a lattice gas with two-particle interactions, leaving th
modynamical properties invariant under the exchange of
ticles and holes. In the spirit of the Curtin-Ashcroft versi
of the WDA @4#, we may choose the following ansatz for th
symmetrized functional~10!, written in terms of Ising spin
variablessi5pi21/2:

Fexc
(S) @s#2Fexc

(S) @0#5(
i

siC~ s̄i !, ~A1!

with Fexc
(S) @s#5Fexc

(S) @2s# and Fexc
(S) @0# being determined by

the conditionFexc
(S) 50 for an empty or a completely filled

lattice. The quantityC(s) is defined such thatf exc
(S) (0)

1sC(s) is equal to the symmetrized excess free energy
site of a uniform system with average spins. Furthermore,s̄i
is a weighted spin,

s̄i5(
j

wi j ~ s̄i !si ,

with wi j a ~translationally invariant! normalized weight func-
tion: ( jwi j 51. Following the standard procedure@4#, the
condition ~17! leads to a first-order differential equation fo
the Fourier componentsw̃q(s) of the weight function, which
is formally equivalent to the Curtin-Ashcroft WDA equatio

2kBTc̃q~s!52C8~s!w̃q~s!1s
d

ds
$C8~s!@w̃q~s!#2%.

~A2!

Here c̃q(s) is the qth Fourier component of the OZ direc
correlation function. Sincec̃q(s)5 c̃q(2s) and C(s)5

2C(2s), Eq. ~A2! allows symmetrical solutionsw̃q(s)
5w̃q(2s). Note that the physical solution of Eq.~A2! must
satisfyw̃q50(s)51, which is the normalization condition. I
the case of a half-filled lattice,s50, we have for the sym-
metrical solution~assuming differentiability of@C8w̃2# at s
50)

w̃q~0!52
kBTc̃q~0!

2C8~0!
, ~A3!

which can be used as initial condition in the integration
Eq. ~A2!.

A simplified version of this type of theory is the ‘‘hybrid
weighted-density functional approach’’~HWDA! @23#,
which in our case yields

2kBTc̃q~s!52C8~s!w̃q~s!1sC9~s!@w̃q~s!#2 ~A4!
i-

l
lly

e
-
-
r-

er

f

instead of Eq.~A2!. Numerical studies reveal that for attra
tive interaction,V,0, this equation generally does not pe
mit real solutions for all temperatures and densities. Let
illustrate this by considering the dilute limits56 1

2 at low
temperatures. Using the compressibility sum rule~18!, we
rewrite Eq.~A4! as

2kBTc̃q52C8@w̃q2w̃q
2#2kBTc̃q50w̃q

2 . ~A5!

In the dilute limit the coefficientsc0 andc1 in Eq. ~18! are
given byc0(6 1

2 )50 andc1(6 1
2 )5exp(2bV)21, hence for

low temperatures~largeb) we have the estimate

Uc̃qS 6
1

2D U}exp~2bV!21.exp~buVu!, ~A6!

which will become large for low temperatures. To estima
C8(6 1

2 ) in Eq. ~A5! we observe that Eq.~A1! demands
C(s)5s21@ f exc

(S) (s)2 f exc
(S) (s50)#. Using Eqs.~11! and~13!,

we obtain

C8~s56 1
2 !54 f exc

(S) ~s50!1V054 f exc~p5 1
2 !.

Since for attractive interactionf exc9 52b21c̃0,0, we de-
duce from Eq.~13! and the fact thatf exc(1)5 1

2 V0,0 the
inequalities 1

2 V0p< f exc(p)<0. Now we have an uppe
bound for the magnitude ofC8(6 1

2 ) which is independent
of temperature:

uC8~6 1
2 !u<uV0u.

Therefore, in view of Eq.~A6!, uC8(6 1
2 )u!uc̃q(6 1

2 )u for
low temperatures and Eq.~A5! yields

@w̃q~6 1
2 !#2.

c̃q~6 1
2 !

c̃q50~6 1
2 !

, ~A7!

which is negative if we chooseq near the boundary of the
first Brillouin zone of our lattice. A related problem als
exists for the differential equation~A2!.

This problem does not exist for repulsive interactions,
voring ordered states of the lattice gas. The possibility
investigate ordering transitions in lattice gases by t
method still needs to be explored. Note also that Eqs.~A2!
and ~A4! as used in the WDA and HWDA for continuou
fluids reduce to Eq.~A3! in the dilute limit,not to Eq. ~A7!.
This is due to the fact that for continuous fluids, the sp
densitys must be replaced by the particle densityp in Eqs.
~A2! and ~A4!.

An alternative expression forFexc
(S) @p# might be

Fexc
(S) @p#5(

i
pi~12pi !F~ p̄i !, ~A8!

which in the case of a dilute~or nearly filled! lattice gas
should yield properties similar to the continuum theory fo
system of particles~or holes!. Here p̄i again is a weighted
density, andF(p)5F(12p). Instead of Eqs.~A2! and~A4!
we now obtain



-

a-

re
e

s,
e
ht

ry
w-

eral
n
ts
nt

428 PRE 61J. REINHARD, W. DIETERICH, P. MAASS, AND H. L. FRISCH
2kBTc̃q~p!522F~p!12~122p!F8~p!w̃q~p!

1p~12p!
d

dp
$F8~p!@w̃q~p!#2% ~A9!

for the WDA and

2kBTc̃q~p!522F~p!12~122p!F8~p!w̃q~p!

1p~12p!F9~p!@w̃q~p!#2 ~A10!

for the HWDA. In Eq.~A9!, the coefficient ofw̃q8 vanishes
for p50 ~andp51) as well as forp5 1

2 ~due to the symme-
try of F). Thus, we have

w̃q~0!5
2F~0!2kBTc̃q~0!

2F8~0!
.

On the other hand,w̃q( 1
2 ) is obtained from a quadratic equa

tion as that solution which on continuation toq50 satisfies
.

ns

,

E

the normalization conditionw̃q50(p)[1. Choosing this so-
lution as initial condition to integrate Eq.~A9!, the resulting

w̃q(p) does not converge tow̃q(0) on approachingp50 and
p51, but diverges. A related problem of the HWDA equ

tion ~A10! is that correctly normalized solutionsw̃q(p) be-
come discontinuous at some densityp* , for any qÞ0.
Hence, Eq.~A8! can be used, if at all, only in cases whe
the densitiespi show little spatial variation and do not com
close top* .

Basically, the difficulties with the above WDA scheme
Eqs. ~A1! and ~A8!, arise from the fact that by solving th
associated first-order differential equation for the weig
function, the correct low-density limit and the symmet
condition generally cannot be satisfied simultaneously. Ho
ever, these shortcomings may not arise in more gen
WDA methods involving more than one weight functio
@9,24–26#. Note also that an exact density functional exis
for hard rods in one dimension, which involves two differe
weight functions@33–35#.
ol.

is
la-
t
ro-
@1# R. Evans, inFundamentals of Inhomogeneous Fluids, edited
by D. Henderson~Dekker, New York, 1992!, p. 85.
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